Hierarchical retinal blood vessel segmentation based on feature and ensemble learning
نویسندگان
چکیده
Segmentation of retinal blood vessels is of substantial clinical importance for diagnoses of many diseases, such as diabetic retinopathy, hypertension and cardiovascular diseases. In this paper, the supervised method is presented to tackle the problem of retinal blood vessel segmentation, which combines two superior classifiers: Convolutional Neural Network (CNN) and Random Forest (RF). In this method, CNN performs as a trainable hierarchical feature extractor and ensemble RFs work as a trainable classifier. By integrating the merits of feature learning and traditional classifier, the proposed method is able to automatically learn features from the raw images and predict the patterns. Extensive experiments have been conducted on two public retinal images databases (DRIVE and STARE), and comparisons with other major studies on the same database demonstrate the promising performance and effectiveness of the proposed method. & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters
In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...
متن کاملVessel Delineation in Retinal Images using Leung-Malik filters and Two Levels Hierarchical Learning
Blood vessel segmentation is important for the analysis of ocular fundus images for diseases affecting vessel caliber, occlusion, leakage, inflammation, and proliferation. We introduce a novel supervised method to evaluate performance of Leung-Malik filters in delineating vessels. First, feature vectors are extracted for every pixel with respect to the response of Leung-Malik filters on green c...
متن کاملRetinal Vessel Segmentation Using Ensemble Classifier of Bagged Decision Trees
This paper presents a new supervised method for segmentation of blood vessels in retinal images. This method uses an ensemble system of boot strapped decision trees and utilizes a feature vector based on the orientation analysis of gradient vector field, morphological linear transformation, line strength measures and Gabor filter responses. The feature vector encodes information to handle the h...
متن کاملRobust Retinal Blood Vessel Segmentation Based on Reinforcement Local Descriptions
Retinal blood vessels segmentation plays an important role for retinal image analysis. In this paper, we propose robust retinal blood vessel segmentation method based on reinforcement local descriptions. A novel line set based feature is firstly developed to capture local shape information of vessels by employing the length prior of vessels, which is robust to intensity variety. After that, loc...
متن کاملA Novel Retinal Vessel Segmentation Based On Histogram Transformation Using 2-D Morlet Wavelet and Supervised Classification
The appearance and structure of blood vessels in retinal images have an important role in diagnosis of diseases. This paper proposes a method for automatic retinal vessel segmentation. In this work, a novel preprocessing based on local histogram equalization is used to enhance the original image then pixels are classified as vessel and nonvessel using a classifier. For this classification, spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 149 شماره
صفحات -
تاریخ انتشار 2015